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Exercise 5.1  

Question 1: 

Prove that the function is continuous at  

Answer 

 

Therefore, f is continuous at x = 0 

 

Therefore, f is continuous at x = −3 

 

Therefore, f is continuous at x = 5 

 

Question 2: 

Examine the continuity of the function . 

Answer 

 

Thus, f is continuous at x = 3 
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Question 3: 

Examine the following functions for continuity. 

(a) (b) 
 

(c) (d) 
 

Answer 

 (a) The given function is  

It is evident that f is defined at every real number k and its value at k is k − 5. 

It is also observed that,  

 

Hence, f is continuous at every real number and therefore, it is a continuous function. 

(b) The given function is
 

For any real number k ≠ 5, we obtain 

 

Hence, f is continuous at every point in the domain of f and therefore, it is a continuous 

function. 

(c) The given function is
 

For any real number c ≠ −5, we obtain 
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Hence, f is continuous at every point in the domain of f and therefore, it is a continuous 

function. 

(d) The given function is 
 

This function f is defined at all points of the real line. 

Let c be a point on a real line. Then, c < 5 or c = 5 or c > 5 

Case I: c < 5 

Then, f (c) = 5 − c 

 

Therefore, f is continuous at all real numbers less than 5. 

Case II : c = 5 

Then, 
 

 

 

Therefore, f is continuous at x = 5 

Case III: c > 5 

 

 

Therefore, f is continuous at all real numbers greater than 5. 

Hence, f is continuous at every real number and therefore, it is a continuous function. 
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Question 4: 

Prove that the function is continuous at x = n, where n is a positive integer. 

Answer 

The given function is f (x) = xn 

It is evident that f is defined at all positive integers, n, and its value at n is nn. 

 

 

Therefore, f is continuous at n, where n is a positive integer. 

 

Question 5: 

Is the function f defined by 

 

continuous at x = 0? At x = 1? At x = 2? 

Answer 

The given function f is  

At x = 0, 

It is evident that f is defined at 0 and its value at 0 is 0. 

 

 

Therefore, f is continuous at x = 0 

At x = 1, 

f is defined at 1 and its value at 1 is 1. 

The left hand limit of f at x = 1 is, 

 

The right hand limit of f at x = 1 is, 
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Therefore, f is not continuous at x = 1 

At x = 2, 

f is defined at 2 and its value at 2 is 5. 

 

 

Therefore, f is continuous at x = 2 

 

Question 6: 

Find all points of discontinuity of f, where f is defined by 

 

Answer 

 

It is evident that the given function f is defined at all the points of the real line. 

Let c be a point on the real line. Then, three cases arise. 

(i) c < 2 

(ii) c > 2 

(iii) c = 2 

Case (i) c < 2 

 

Therefore, f is continuous at all points x, such that x < 2 

Case (ii) c > 2 
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Therefore, f is continuous at all points x, such that x > 2 

Case (iii) c = 2 

Then, the left hand limit of f at x = 2 is, 

 

The right hand limit of f at x = 2 is, 

 

It is observed that the left and right hand limit of f at x = 2 do not coincide. 

Therefore, f is not continuous at x = 2 

Hence, x = 2 is the only point of discontinuity of f. 

 

Question 7: 

Find all points of discontinuity of f, where f is defined by 

 

Answer 

 

The given function f is defined at all the points of the real line. 

Let c be a point on the real line. 

Case I: 
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Therefore, f is continuous at all points x, such that x < −3 

Case II: 

 

 

Therefore, f is continuous at x = −3 

Case III: 

 

 

Therefore, f is continuous in (−3, 3). 

Case IV: 

If c = 3, then the left hand limit of f at x = 3 is, 

 

The right hand limit of f at x = 3 is, 

 

It is observed that the left and right hand limit of f at x = 3 do not coincide. 

Therefore, f is not continuous at x = 3 

Case V: 

 

Therefore, f is continuous at all points x, such that x > 3 

Hence, x = 3 is the only point of discontinuity of f. 

 

Question 8: 

Find all points of discontinuity of f, where f is defined by 
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Answer 

 

It is known that,
 

Therefore, the given function can be rewritten as 

 

The given function f is defined at all the points of the real line. 

Let c be a point on the real line. 

Case I: 

 

 

Therefore, f is continuous at all points x < 0 

Case II: 

If c = 0, then the left hand limit of f at x = 0 is, 

 

The right hand limit of f at x = 0 is, 

 

It is observed that the left and right hand limit of f at x = 0 do not coincide. 

Therefore, f is not continuous at x = 0 

Case III: 
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Therefore, f is continuous at all points x, such that x > 0 

Hence, x = 0 is the only point of discontinuity of f. 

 

Question 9: 

Find all points of discontinuity of f, where f is defined by 

 

Answer 

 

It is known that,
 

Therefore, the given function can be rewritten as 

 

Let c be any real number. Then,  

Also,  

Therefore, the given function is a continuous function. 

Hence, the given function has no point of discontinuity. 

 

Question 10: 

Find all points of discontinuity of f, where f is defined by 
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Answer 

 

The given function f is defined at all the points of the real line. 

Let c be a point on the real line. 

Case I: 

 

Therefore, f is continuous at all points x, such that x < 1 

Case II: 

 

The left hand limit of f at x = 1 is, 

 

The right hand limit of f at x = 1 is, 

 

Therefore, f is continuous at x = 1 

Case III: 

 

 

Therefore, f is continuous at all points x, such that x > 1 

Hence, the given function f has no point of discontinuity. 

 

Question 11: 

Find all points of discontinuity of f, where f is defined by 
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Answer 

 

The given function f is defined at all the points of the real line. 

Let c be a point on the real line. 

Case I: 

 

 

Therefore, f is continuous at all points x, such that x < 2 

Case II: 

 

 

Therefore, f is continuous at x = 2 

Case III: 

 

Therefore, f is continuous at all points x, such that x > 2 

Thus, the given function f is continuous at every point on the real line. 

Hence, f has no point of discontinuity. 

 

Question 12: 

Find all points of discontinuity of f, where f is defined by 
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Answer 

 

The given function f is defined at all the points of the real line. 

Let c be a point on the real line. 

Case I: 

 

Therefore, f is continuous at all points x, such that x < 1 

Case II: 

If c = 1, then the left hand limit of f at x = 1 is, 

 

The right hand limit of f at x = 1 is, 

 

It is observed that the left and right hand limit of f at x = 1 do not coincide. 

Therefore, f is not continuous at x = 1 

Case III: 

 

 

Therefore, f is continuous at all points x, such that x > 1 

Thus, from the above observation, it can be concluded that x = 1 is the only point of 

discontinuity of f. 

 

Question 13: 

Is the function defined by  
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a continuous function? 

Answer 

The given function is
 

The given function f is defined at all the points of the real line. 

Let c be a point on the real line. 

Case I: 

 

 

Therefore, f is continuous at all points x, such that x < 1 

Case II: 

 

The left hand limit of f at x = 1 is, 

 

The right hand limit of f at x = 1 is, 

 

It is observed that the left and right hand limit of f at x = 1 do not coincide. 

Therefore, f is not continuous at x = 1 

Case III: 

 

 

Therefore, f is continuous at all points x, such that x > 1 

Thus, from the above observation, it can be concluded that x = 1 is the only point of 

discontinuity of f. 

 

Question 14: 
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Discuss the continuity of the function f, where f is defined by 

 

Answer 

The given function is

 

The given function is defined at all points of the interval [0, 10]. 

Let c be a point in the interval [0, 10]. 

Case I: 

 

Therefore, f is continuous in the interval [0, 1). 

Case II: 

 

The left hand limit of f at x = 1 is, 

 

The right hand limit of f at x = 1 is, 

 

It is observed that the left and right hand limits of f at x = 1 do not coincide. 

Therefore, f is not continuous at x = 1 

Case III: 

 

Therefore, f is continuous at all points of the interval (1, 3). 

Case IV: 
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The left hand limit of f at x = 3 is, 

 

The right hand limit of f at x = 3 is, 

 

It is observed that the left and right hand limits of f at x = 3 do not coincide. 

Therefore, f is not continuous at x = 3 

Case V: 

 

 

Therefore, f is continuous at all points of the interval (3, 10]. 

Hence, f is not continuous at x = 1 and x = 3 

 

Question 15: 

Discuss the continuity of the function f, where f is defined by 

 

Answer 

The given function is

 

The given function is defined at all points of the real line. 

Let c be a point on the real line. 

Case I: 

 

Therefore, f is continuous at all points x, such that x < 0 
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Case II: 

 

The left hand limit of f at x = 0 is, 

 

The right hand limit of f at x = 0 is, 

 

Therefore, f is continuous at x = 0 

Case III: 

 

Therefore, f is continuous at all points of the interval (0, 1). 

Case IV: 

 

The left hand limit of f at x = 1 is, 

 

The right hand limit of f at x = 1 is, 

 

It is observed that the left and right hand limits of f at x = 1 do not coincide. 

Therefore, f is not continuous at x = 1 

Case V: 

 

Therefore, f is continuous at all points x, such that x > 1 

Hence, f is not continuous only at x = 1 

 

Question 16: 

Discuss the continuity of the function f, where f is defined by 
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Answer 

 

The given function is defined at all points of the real line. 

Let c be a point on the real line. 

Case I: 

 

Therefore, f is continuous at all points x, such that x < −1 

Case II: 

 

The left hand limit of f at x = −1 is, 

 

The right hand limit of f at x = −1 is, 

 

 

Therefore, f is continuous at x = −1 

Case III: 

 

Therefore, f is continuous at all points of the interval (−1, 1). 

Case IV: 
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The left hand limit of f at x = 1 is, 

 

The right hand limit of f at x = 1 is, 

 

 

Therefore, f is continuous at x = 2 

Case V: 

 

 

Therefore, f is continuous at all points x, such that x > 1 

Thus, from the above observations, it can be concluded that f is continuous at all points 

of the real line. 

 

Question 17: 

Find the relationship between a and b so that the function f defined by  

 

is continuous at x = 3. 

Answer 

 

If f is continuous at x = 3, then 
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Therefore, from (1), we obtain 

 

Therefore, the required relationship is given by,  

 

Question 18: 

For what value of is the function defined by  

 

continuous at x = 0? What about continuity at x = 1? 

Answer 

The given function  is

 

If f is continuous at x = 0, then 

 

Therefore, there is no value of λ for which f is continuous at x = 0 
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At x = 1, 

f (1) = 4x + 1 = 4 × 1 + 1 = 5 

 

Therefore, for any values of λ, f is continuous at x = 1 

 

Question 19: 

Show that the function defined by is discontinuous at all integral point. 

Here denotes the greatest integer less than or equal to x.  

Answer 

The given function is  

It is evident that g is defined at all integral points. 

Let n be an integer. 

Then, 

 

The left hand limit of f at x = n is, 

 

The right hand limit of f at x = n is, 

 

It is observed that the left and right hand limits of f at x = n do not coincide. 

Therefore, f is not continuous at x = n 

Hence, g is discontinuous at all integral points. 

 

Question 20: 

Is the function defined by continuous at x = p? 

Answer 

The given function is  
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It is evident that f is defined at x = p 

 

 

Therefore, the given function f is continuous at x = π 

 

Question 21: 

Discuss the continuity of the following functions. 

(a) f (x) = sin x + cos x 

(b) f (x) = sin x − cos x 

(c) f (x) = sin x × cos x  

Answer 

It is known that if g and h are two continuous functions, then  

are also continuous. 

It has to proved first that g (x) = sin x and h (x) = cos x are continuous functions. 

Let g (x) = sin x 

It is evident that g (x) = sin x is defined for every real number. 

Let c be a real number. Put x = c + h 

If x → c, then h → 0 
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Therefore, g is a continuous function. 

Let h (x) = cos x 

It is evident that h (x) = cos x is defined for every real number. 

Let c be a real number. Put x = c + h 

If x → c, then h → 0 

h (c) = cos c 

 

Therefore, h is a continuous function. 

Therefore, it can be concluded that 

(a) f (x) = g (x) + h (x) = sin x + cos x is a continuous function 

(b) f (x) = g (x) − h (x) = sin x − cos x is a continuous function 

(c) f (x) = g (x) × h (x) = sin x × cos x is a continuous function 
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Question 22: 

Discuss the continuity of the cosine, cosecant, secant and cotangent functions, 

Answer 

It is known that if g and h are two continuous functions, then 

 

It has to be proved first that g (x) = sin x and h (x) = cos x are continuous functions. 

Let g (x) = sin x 

It is evident that g (x) = sin x is defined for every real number. 

Let c be a real number. Put x = c + h 

If x c, then h 0 

 

Therefore, g is a continuous function. 

Let h (x) = cos x 

It is evident that h (x) = cos x is defined for every real number. 

Let c be a real number. Put x = c + h 

If x c, then h

h (c) = cos c 

0 
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Therefore, h (x) = cos x is continuous function. 

It can be concluded that, 

 

Therefore, cosecant is continuous except at x = np, n Î Z 

 

Therefore, secant is continuous except at  

 

Therefore, cotangent is continuous except at x = np, n Î Z 

 

Question 23: 

Find the points of discontinuity of f, where 
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Answer 

 

It is evident that f is defined at all points of the real line. 

Let c be a real number. 

Case I: 

 

Therefore, f is continuous at all points x, such that x < 0 

Case II: 

 

Therefore, f is continuous at all points x, such that x > 0 

Case III: 

 

The left hand limit of f at x = 0 is, 

 

The right hand limit of f at x = 0 is, 

 

Therefore, f is continuous at x = 0 

From the above observations, it can be concluded that f is continuous at all points of the 

real line. 

Thus, f has no point of discontinuity. 

 

 

 



 
Class XII  Chapter 5 – Continuity and Differentiability Maths 

 

 
Page 26 of 144 

 

Question 24: 

Determine if f defined by  

 

is a continuous function? 

Answer 

 

It is evident that f is defined at all points of the real line. 

Let c be a real number. 

Case I: 

 

Therefore, f is continuous at all points x ≠ 0 

Case II: 
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Therefore, f is continuous at x = 0 

From the above observations, it can be concluded that f is continuous at every point of 

the real line. 

Thus, f is a continuous function. 

 

Question 25: 

Examine the continuity of f, where f is defined by 

 

Answer 

 

It is evident that f is defined at all points of the real line. 

Let c be a real number. 

Case I: 
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Therefore, f is continuous at all points x, such that x ≠ 0 

Case II: 

 

 

Therefore, f is continuous at x = 0 

From the above observations, it can be concluded that f is continuous at every point of 

the real line. 

Thus, f is a continuous function. 

 

Question 26: 

Find the values of k so that the function f is continuous at the indicated point. 

 

Answer 

 

The given function f is continuous at , if f is defined at and if the value of the f 

at equals the limit of f at . 
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It is evident that f is defined at  and  

 

Therefore, the required value of k is 6. 

 

Question 27: 

Find the values of k so that the function f is continuous at the indicated point. 

 

Answer 

The given function is

 

The given function f is continuous at x = 2, if f is defined at x = 2 and if the value of f at 

x = 2 equals the limit of f at x = 2 

It is evident that f is defined at x = 2 and  
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Therefore, the required value of . 

 

Question 28: 

Find the values of k so that the function f is continuous at the indicated point. 

 

Answer 

The given function is
 

The given function f is continuous at x = p, if f is defined at x = p and if the value of f at 

x = p equals the limit of f at x = p 

It is evident that f is defined at x = p and  

 

Therefore, the required value of  
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Question 29: 

Find the values of k so that the function f is continuous at the indicated point. 

 

Answer 

 

The given function f is continuous at x = 5, if f is defined at x = 5 and if the value of f at 

x = 5 equals the limit of f at x = 5 

It is evident that f is defined at x = 5 and  

 

Therefore, the required value of  

 

 

Question 30: 

Find the values of a and b such that the function defined by 

 

is a continuous function.  
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Answer 

 

It is evident that the given function f is defined at all points of the real line. 

If f is a continuous function, then f is continuous at all real numbers. 

In particular, f is continuous at x = 2 and x = 10 

Since f is continuous at x = 2, we obtain 

 

Since f is continuous at x = 10, we obtain 

 

On subtracting equation (1) from equation (2), we obtain 

8a = 16 

⇒ a = 2 

By putting a = 2 in equation (1), we obtain 

2 × 2 + b = 5 

⇒ 4 + b = 5 
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⇒ b = 1 

Therefore, the values of a and b for which f is a continuous function are 2 and 1 

respectively. 

 

Question 31: 

Show that the function defined by f (x) = cos (x2) is a continuous function. 

Answer 

The given function is f (x) = cos (x2) 

This function f is defined for every real number and f can be written as the composition 

of two functions as, 

f = g o h, where g (x) = cos x and h (x) = x2 

 

It has to be first proved that g (x) = cos x and h (x) = x2 are continuous functions. 

It is evident that g is defined for every real number. 

Let c be a real number. 

Then, g (c) = cos c 

 

Therefore, g (x) = cos x is continuous function. 
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h (x) = x2 

Clearly, h is defined for every real number. 

Let k be a real number, then h (k) = k2 

 

Therefore, h is a continuous function. 

It is known that for real valued functions g and h,such that (g o h) is defined at c, if g is 

continuous at c and if f is continuous at g (c), then (f o g) is continuous at c. 

Therefore, is a continuous function. 

 

Question 32: 

Show that the function defined by  is a continuous function. 

Answer 

The given function is  

This function f is defined for every real number and f can be written as the composition 

of two functions as, 

f = g o h, where  

 

It has to be first proved that are continuous functions. 

 

Clearly, g is defined for all real numbers. 

Let c be a real number. 

Case I: 
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Therefore, g is continuous at all points x, such that x < 0 

Case II: 

 

Therefore, g is continuous at all points x, such that x > 0 

Case III: 

 

 

Therefore, g is continuous at x = 0 

From the above three observations, it can be concluded that g is continuous at all points. 

h (x) = cos x 

It is evident that h (x) = cos x is defined for every real number. 

Let c be a real number. Put x = c + h 

If x → c, then h → 0 

h (c) = cos c 

 

Therefore, h (x) = cos x is a continuous function. 

It is known that for real valued functions g and h,such that (g o h) is defined at c, if g is 

continuous at c and if f is continuous at g (c), then (f o g) is continuous at c. 
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Therefore, is a continuous function. 

 

Question 33: 

Examine that is a continuous function. 

Answer 

 

This function f is defined for every real number and f can be written as the composition 

of two functions as, 

f = g o h, where  

 

It has to be proved first that are continuous functions. 

 

Clearly, g is defined for all real numbers. 

Let c be a real number. 

Case I: 

 

Therefore, g is continuous at all points x, such that x < 0 

Case II: 

 

Therefore, g is continuous at all points x, such that x > 0 

Case III: 

 



 
Class XII  Chapter 5 – Continuity and Differentiability Maths 

 

 
Page 37 of 144 

 

 

Therefore, g is continuous at x = 0 

From the above three observations, it can be concluded that g is continuous at all points. 

h (x) = sin x 

It is evident that h (x) = sin x is defined for every real number. 

Let c be a real number. Put x = c + k 

If x → c, then k → 0 

h (c) = sin c 

 

Therefore, h is a continuous function. 

It is known that for real valued functions g and h,such that (g o h) is defined at c, if g is 

continuous at c and if f is continuous at g (c), then (f o g) is continuous at c. 

Therefore, is a continuous function. 

 

Question 34: 

Find all the points of discontinuity of f defined by . 

Answer 

The given function is  
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The two functions, g and h, are defined as 

 

Then, f = g − h 

The continuity of g and h is examined first. 

 

Clearly, g is defined for all real numbers. 

Let c be a real number. 

Case I: 

 

Therefore, g is continuous at all points x, such that x < 0 

Case II: 

 

Therefore, g is continuous at all points x, such that x > 0 

Case III: 

 

 

Therefore, g is continuous at x = 0 

From the above three observations, it can be concluded that g is continuous at all points. 

 

Clearly, h is defined for every real number. 
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Let c be a real number. 

Case I: 

 

Therefore, h is continuous at all points x, such that x < −1 

Case II: 

 

Therefore, h is continuous at all points x, such that x > −1 

Case III: 

 

 

 

Therefore, h is continuous at x = −1 

From the above three observations, it can be concluded that h is continuous at all points 

of the real line. 

g and h are continuous functions. Therefore, f = g − h is also a continuous function. 

Therefore, f has no point of discontinuity. 
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Exercise 5.2 

 

Question 1: 

Differentiate the functions with respect to x. 

 

Answer 

 

Thus, f is a composite of two functions. 

 

Alternate method 

 

 

Question 2: 

Differentiate the functions with respect to x. 
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Answer 

 

Thus, f is a composite function of two functions. 

Put t = u (x) = sin x 

 

By chain rule,
 

Alternate method 

 

 

Question 3: 

Differentiate the functions with respect to x. 

 

Answer 

 

Thus, f is a composite function of two functions, u and v. 

Put t = u (x) = ax + b 

 

Hence, by chain rule, we obtain 
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Alternate method 

 

 

Question 4: 

Differentiate the functions with respect to x. 

 

Answer 

 

Thus, f is a composite function of three functions, u, v, and w. 

 

 

Hence, by chain rule, we obtain 
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Alternate method 

 

 

Question 5: 

Differentiate the functions with respect to x. 

 

Answer 

The given function is , where g (x) = sin (ax + b) and  

h (x) = cos (cx + d) 
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∴ g is a composite function of two functions, u and v. 

 

Therefore, by chain rule, we obtain 

 

∴h is a composite function of two functions, p and q. 

Put y = p (x) = cx + d 

 

Therefore, by chain rule, we obtain 
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Question 6: 

Differentiate the functions with respect to x. 

 

Answer 

The given function is

 

 

Question 7: 

Differentiate the functions with respect to x. 

 

Answer 
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Question 8: 

Differentiate the functions with respect to x. 

 

Answer 

 

Clearly, f is a composite function of two functions, u and v, such that 
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By using chain rule, we obtain 

 

Alternate method 

 

 

Question 9: 

Prove that the function f given by 

is notdifferentiable at x = 1. 

Answer 

The given function is  
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It is known that a function f is differentiable at a point x = c in its domain if both  

are finite and equal. 

To check the differentiability of the given function at x = 1,  

consider the left hand limit of f at x = 1 

 

 

Since the left and right hand limits of f at x = 1 are not equal, f is not differentiable at x 

= 1 

 

Question 10: 

Prove that the greatest integer function defined by is not  

differentiable at x = 1 and x = 2. 

Answer 

The given function f is  

It is known that a function f is differentiable at a point x = c in its domain if both  

are finite and equal. 

To check the differentiability of the given function at x = 1, consider the left hand limit of 

f at x = 1 
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Since the left and right hand limits of f at x = 1 are not equal, f is not differentiable at  

x = 1 

To check the differentiability of the given function at x = 2, consider the left hand limit 

of f at x = 2 

 

 

Since the left and right hand limits of f at x = 2 are not equal, f is not differentiable at x 

= 2 

 

 

 

 

 

 

 

 

 



 
Class XII  Chapter 5 – Continuity and Differentiability Maths 

 

 
Page 50 of 144 

 

Exercise 5.3 

 

Question 1: 

Find : 

 

Answer 

The given relationship is  

Differentiating this relationship with respect to x, we obtain 

 

 

Question 2: 

Find 

 

Answer 

The given relationship is  

Differentiating this relationship with respect to x, we obtain 
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Question 3: 

Find 

 

Answer 

The given relationship is  

Differentiating this relationship with respect to x, we obtain 

 

Using chain rule, we obtain and  

From (1) and (2), we obtain 

 

 

Question 4: 

Find 
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Answer 

The given relationship is  

Differentiating this relationship with respect to x, we obtain 

 

 

Question 5: 

Find 

 

Answer 

The given relationship is  

Differentiating this relationship with respect to x, we obtain 
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Question 6: 

Find 

 

Answer 

The given relationship is  

Differentiating this relationship with respect to x, we obtain 

 

 

Question 7: 

Find 
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Answer 

The given relationship is  

Differentiating this relationship with respect to x, we obtain 

 

Using chain rule, we obtain 

 

From (1), (2), and (3), we obtain 

 

 

Question 8: 

Find 

 

Answer 

The given relationship is  

Differentiating this relationship with respect to x, we obtain 
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Question 9: 

Find 

 

Answer 

The given relationship is
 

 

Differentiating this relationship with respect to x, we obtain 

 

The function, , is of the form of . 

Therefore, by quotient rule, we obtain 
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Also,
 

 

From (1), (2), and (3), we obtain 

 

 

Question 10: 

Find 

 

Answer 

The given relationship is  
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It is known that, 

 

Comparing equations (1) and (2), we obtain 

 

Differentiating this relationship with respect to x, we obtain 

 

 

Question 11: 

Find 

 

Answer 

The given relationship is, 
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On comparing L.H.S. and R.H.S. of the above relationship, we obtain 

 

Differentiating this relationship with respect to x, we obtain 

 

 

Question 12: 

Find 

 

Answer 

The given relationship is
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Differentiating this relationship with respect to x, we obtain 

 

Using chain rule, we obtain 

 

 

 

From (1), (2), and (3), we obtain 
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Alternate method 

 

⇒

 

 

 

Differentiating this relationship with respect to x, we obtain 
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Question 13: 

Find 

 

Answer 

The given relationship is
 

 

Differentiating this relationship with respect to x, we obtain 
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Question 14: 

Find 

 

Answer 

 

 

Differentiating this relationship with respect to x, we obtain 

The given relationship is
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Question 15: 

Find 

 

Answer 

The given relationship is
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Differentiating this relationship with respect to x, we obtain 
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Exercise 5.4 

 

Question 1: 

Differentiate the following w.r.t. x: 

 

Answer 

Let
 

By using the quotient rule, we obtain 

 

 

Question 2: 

Differentiate the following w.r.t. x: 

 

Answer 

Let  

By using the chain rule, we obtain 
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Question 2: 

Show that the function given by f(x) = e2x is strictly increasing on R. 

Answer 

Let be any two numbers in R.  

Then, we have: 

 

Hence, f is strictly increasing on R. 

 

Question 3: 

Differentiate the following w.r.t. x: 

 

Answer 

Let  

By using the chain rule, we obtain 

 

 

Question 4: 

Differentiate the following w.r.t. x: 
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Answer 

Let  

By using the chain rule, we obtain 

 

 

Question 5: 

Differentiate the following w.r.t. x: 

 

Answer 

Let  

By using the chain rule, we obtain 
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Question 6: 

Differentiate the following w.r.t. x: 

 

Answer 

 

 

Question 7: 

Differentiate the following w.r.t. x: 

 

Answer 

Let  

Then,  

By differentiating this relationship with respect to x, we obtain 
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Question 8: 

Differentiate the following w.r.t. x: 

 

Answer 

Let
 

By using the chain rule, we obtain 

 

, x > 1 

 

Question 9: 

Differentiate the following w.r.t. x: 
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Answer 

Let
 

By using the quotient rule, we obtain 

 

 

Question 10: 

Differentiate the following w.r.t. x: 

 

Answer 

Let
 

By using the chain rule, we obtain 
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Exercise 5.5 

 

Question 1: 

Differentiate the function with respect to x. 

 

Answer 

 

Taking logarithm on both the sides, we obtain 

 

Differentiating both sides with respect to x, we obtain 

 

 

Question 2: 

Differentiate the function with respect to x. 

 

Answer 

 

Taking logarithm on both the sides, we obtain 
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Differentiating both sides with respect to x, we obtain 

 

 

Question 3: 

Differentiate the function with respect to x. 

 

Answer 

 

Taking logarithm on both the sides, we obtain 

 

Differentiating both sides with respect to x, we obtain 
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Question 4: 

Differentiate the function with respect to x. 

 

Answer 

 

u = xx 

Taking logarithm on both the sides, we obtain 

 

Differentiating both sides with respect to x, we obtain 

 

v = 2sin x 

Taking logarithm on both the sides with respect to x, we obtain 
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Differentiating both sides with respect to x, we obtain 

 

 

Question 5: 

Differentiate the function with respect to x. 

 

Answer 

 

Taking logarithm on both the sides, we obtain 

 

Differentiating both sides with respect to x, we obtain 
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Question 6: 

Differentiate the function with respect to x. 

 

Answer 

 

 

Differentiating both sides with respect to x, we obtain 
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Differentiating both sides with respect to x, we obtain 
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Therefore, from (1), (2), and (3), we obtain 

 

 

Question 7: 

Differentiate the function with respect to x. 

 

Answer 

 

 

u = (log x)x 

 

Differentiating both sides with respect to x, we obtain 
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Differentiating both sides with respect to x, we obtain 

 

Therefore, from (1), (2), and (3), we obtain 

 

 

Question 8: 

Differentiate the function with respect to x. 
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Answer 

 

 

 

Differentiating both sides with respect to x, we obtain 

 

Therefore, from (1), (2), and (3), we obtain 
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Question 9: 

Differentiate the function with respect to x. 

 

Answer 

 

 

Differentiating both sides with respect to x, we obtain 

 

 

Differentiating both sides with respect to x, we obtain 
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From (1), (2), and (3), we obtain 

 

 

Question 10: 

Differentiate the function with respect to x. 

 

Answer 

 

 

Differentiating both sides with respect to x, we obtain 
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Differentiating both sides with respect to x, we obtain 

 

From (1), (2), and (3), we obtain 

 

 

Question 11: 

Differentiate the function with respect to x. 
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Answer 

 

 

Differentiating both sides with respect to x, we obtain 

 



 
Class XII  Chapter 5 – Continuity and Differentiability Maths 

 

 
Page 84 of 144 

 

 

Differentiating both sides with respect to x, we obtain 

 

From (1), (2), and (3), we obtain 

 

 

Question 12: 

Find of function. 
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Answer 

The given function is  

Let xy = u and yx = v 

Then, the function becomes u + v = 1 

 

 

Differentiating both sides with respect to x, we obtain 

 

 

Differentiating both sides with respect to x, we obtain 

 

From (1), (2), and (3), we obtain 
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Question 13: 

Find of function. 

 

Answer 

The given function is  

Taking logarithm on both the sides, we obtain 

 

Differentiating both sides with respect to x, we obtain 

 

 

Question 14: 

Find of function. 
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Answer 

The given function is  

Taking logarithm on both the sides, we obtain 

 

Differentiating both sides, we obtain 

 

 

Question 15: 

Find of function. 

 

Answer 

The given function is  

Taking logarithm on both the sides, we obtain 
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Differentiating both sides with respect to x, we obtain 

 

 

Question 16: 

Find the derivative of the function given by  and hence 

find . 

Answer 

The given relationship is  

Taking logarithm on both the sides, we obtain 

 

Differentiating both sides with respect to x, we obtain 
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Question 17: 

Differentiate in three ways mentioned below  

(i) By using product rule. 

(ii) By expanding the product to obtain a single polynomial. 

(iii By logarithmic differentiation. 

Do they all give the same answer? 

Answer 

 
(i) 
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(ii)  

 

(iii)  

Taking logarithm on both the sides, we obtain 

 

Differentiating both sides with respect to x, we obtain 
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From the above three observations, it can be concluded that all the results of are 

same. 

 

Question 18: 

If u, v and w are functions of x, then show that 

 

in two ways-first by repeated application of product rule, second by logarithmic 

differentiation.  

Answer 

Let  

By applying product rule, we obtain 
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By taking logarithm on both sides of the equation , we obtain 

 

Differentiating both sides with respect to x, we obtain 
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Exercise 5.6 

 

Question 1: 

If x and y are connected parametrically by the equation, without eliminating the 

parameter, find . 

 

Answer 

The given equations are  

 

 

Question 2: 

If x and y are connected parametrically by the equation, without eliminating the 

parameter, find . 

x = a cos θ, y = b cos θ 

Answer 

The given equations are x = a cos θ and y = b cos θ 
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Question 3: 

If x and y are connected parametrically by the equation, without eliminating the 

parameter, find . 

x = sin t, y = cos 2t 

Answer 

The given equations are x = sin t and y = cos 2t 

 

 

Question 4: 

If x and y are connected parametrically by the equation, without eliminating the 

parameter, find . 

 

Answer 

The given equations are  
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Question 5: 

If x and y are connected parametrically by the equation, without eliminating the 

parameter, find

 

Answer 

The given equations are  

 

 

Question 6: 

If x and y are connected parametrically by the equation, without eliminating the 

parameter, find
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Answer 

The given equations are  

 

 

Question 7: 

If x and y are connected parametrically by the equation, without eliminating the 

parameter, find

 

Answer 

The given equations are  
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Question 8: 

If x and y are connected parametrically by the equation, without eliminating the 

parameter, find
. 

 

Answer 

The given equations are  
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Question 9: 

If x and y are connected parametrically by the equation, without eliminating the 

parameter, find
. 
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Answer 

The given equations are  

 

 

Question 10: 

If x and y are connected parametrically by the equation, without eliminating the 

parameter, find
. 

 

Answer 

The given equations are  
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Question 11: 

If  

Answer 

The given equations are  
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Hence, proved. 
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Exercise 5.7 

 

Question 1: 

Find the second order derivatives of the function. 

 

Answer 

Let  

Then, 

 

 

Question 2: 

Find the second order derivatives of the function. 

 

Answer 

Let  

Then, 

 

 

Question 3: 

Find the second order derivatives of the function. 

 

Answer 

Let  

Then, 
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Question 4: 

Find the second order derivatives of the function. 

 

Answer 

Let  

Then, 

 

 

Question 5: 

Find the second order derivatives of the function. 

 

Answer 

Let  

Then, 
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Question 6: 

Find the second order derivatives of the function. 

 

Answer 

Let  

Then,  



 
Class XII  Chapter 5 – Continuity and Differentiability Maths 

 

 
Page 106 of 144 

 

 

Question 7: 

Find the second order derivatives of the function. 

 

Answer 

Let  

Then, 

 

 

Question 8: 

Find the second order derivatives of the function. 

 

Answer 

Let  

Then, 
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Question 9: 

Find the second order derivatives of the function. 

 

Answer 

Let  

Then, 

 

 

Question 10: 

Find the second order derivatives of the function. 

 

Answer 

Let  

Then, 
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Question 11: 

If , prove that  

Answer 

It is given that,  

Then, 
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Hence, proved. 

 

Question 12: 

If  find in terms of y alone. 

Answer 

It is given that,  

Then, 



 
Class XII  Chapter 5 – Continuity and Differentiability Maths 

 

 
Page 110 of 144 

 

 

 

Question 13: 

If , show that  

Answer 

It is given that,  

Then, 
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Hence, proved. 

 

Question 14: 

If show that  
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Answer 

It is given that,  

Then, 

 

Hence, proved. 

 

Question 15: 

If , show that  

Answer 

It is given that,  

Then, 
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Hence, proved. 

 

Question 16: 

If , show that  

Answer 

The given relationship is  

 

Taking logarithm on both the sides, we obtain 

 

Differentiating this relationship with respect to x, we obtain 
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Hence, proved. 

 

Question 17: 

If , show that  

Answer 

The given relationship is  

Then, 

 

Hence, proved. 
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Exercise 5.8 

 

Question 1:  

Verify Rolle’s Theorem for the function  

Answer 

The given function, , being a polynomial function, is continuous in [−4, 

2] and is differentiable in (−4, 2). 

 

∴ f (−4) = f (2) = 0 

⇒ The value of f (x) at −4 and 2 coincides. 

Rolle’s Theorem states that there is a point c ∈ (−4, 2) such that  

 

Hence, Rolle’s Theorem is verified for the given function. 
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Question 2: 

Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say 

some thing about the converse of Rolle’s Theorem from these examples? 

(i) 
 

(ii) 
 

(iii) 
 

Answer 

By Rolle’s Theorem, for a function , if  

(a) f is continuous on [a, b] 

(b) f is differentiable on (a, b) 

(c) f (a) = f (b) 

then, there exists some c ∈ (a, b) such that  

Therefore, Rolle’s Theorem is not applicable to those functions that do not satisfy any of 

the three conditions of the hypothesis. 

(i) 
 

It is evident that the given function f (x) is not continuous at every integral point. 

In particular, f(x) is not continuous at x = 5 and x = 9 

⇒ f (x) is not continuous in [5, 9]. 

 

The differentiability of f in (5, 9) is checked as follows. 
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Let n be an integer such that n ∈ (5, 9). 

 

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x 

= n 

∴f is not differentiable in (5, 9). 

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s 

Theorem. 

Hence, Rolle’s Theorem is not applicable for . 

(ii) 
 

It is evident that the given function f (x) is not continuous at every integral point. 

In particular, f(x) is not continuous at x = −2 and x = 2 

⇒ f (x) is not continuous in [−2, 2]. 

 

The differentiability of f in (−2, 2) is checked as follows. 



 
Class XII  Chapter 5 – Continuity and Differentiability Maths 

 

 
Page 118 of 144 

 

Let n be an integer such that n ∈ (−2, 2). 

 

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x 

= n 

∴f is not differentiable in (−2, 2). 

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s 

Theorem. 

Hence, Rolle’s Theorem is not applicable for . 

(iii) 
 

It is evident that f, being a polynomial function, is continuous in [1, 2] and is 

differentiable in (1, 2). 

 

∴f (1) ≠ f (2) 

It is observed that f does not satisfy a condition of the hypothesis of Rolle’s Theorem. 
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Hence, Rolle’s Theorem is not applicable for . 

 

Question 3: 

If is a differentiable function and if does not vanish anywhere, then 

prove that . 

Answer 

It is given that is a differentiable function. 

Since every differentiable function is a continuous function, we obtain 

(a) f is continuous on [−5, 5]. 

(b) f is differentiable on (−5, 5). 

Therefore, by the Mean Value Theorem, there exists c ∈ (−5, 5) such that 

 

It is also given that does not vanish anywhere. 

 

Hence, proved. 

 

Question 4: 

Verify Mean Value Theorem, if in the interval , where 

and . 
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Answer 

The given function is  

f, being a polynomial function, is continuous in [1, 4] and is differentiable in (1, 4) 

whose derivative is 2x − 4. 

 

Mean Value Theorem states that there is a point c ∈ (1, 4) such that  

 

Hence, Mean Value Theorem is verified for the given function. 

 

Question 5: 

Verify Mean Value Theorem, if  in the interval [a, b], where a = 1 and 

b = 3. Find all for which  

Answer 

The given function f is  

f, being a polynomial function, is continuous in [1, 3] and is differentiable in (1, 3) 

whose derivative is 3x2 − 10x − 3. 
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Mean Value Theorem states that there exist a point c ∈ (1, 3) such that  

 

Hence, Mean Value Theorem is verified for the given function and is the 

only point for which  

 

Question 6: 

Examine the applicability of Mean Value Theorem for all three functions given in the 

above exercise 2. 

Answer 

Mean Value Theorem states that for a function , if  

(a) f is continuous on [a, b] 

(b) f is differentiable on (a, b) 

then, there exists some c ∈ (a, b) such that  

Therefore, Mean Value Theorem is not applicable to those functions that do not satisfy 

any of the two conditions of the hypothesis. 
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(i) 
 

It is evident that the given function f (x) is not continuous at every integral point. 

In particular, f(x) is not continuous at x = 5 and x = 9 

⇒ f (x) is not continuous in [5, 9]. 

The differentiability of f in (5, 9) is checked as follows. 

Let n be an integer such that n ∈ (5, 9). 

 

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x 

= n 

∴f is not differentiable in (5, 9). 

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value 

Theorem. 

Hence, Mean Value Theorem is not applicable for . 

(ii)  

It is evident that the given function f (x) is not continuous at every integral point. 
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In particular, f(x) is not continuous at x = −2 and x = 2 

⇒ f (x) is not continuous in [−2, 2]. 

The differentiability of f in (−2, 2) is checked as follows. 

Let n be an integer such that n ∈ (−2, 2). 

 

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x 

= n 

∴f is not differentiable in (−2, 2). 

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value 

Theorem. 

Hence, Mean Value Theorem is not applicable for . 

(iii)  

It is evident that f, being a polynomial function, is continuous in [1, 2] and is 

differentiable in (1, 2). 

It is observed that f satisfies all the conditions of the hypothesis of Mean Value Theorem. 
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Hence, Mean Value Theorem is applicable for . 

It can be proved as follows. 
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Miscellaneous Solutions 

 

Question 1: 

 

Answer 

 

Using chain rule, we obtain 

 

 

Question 2: 

 

Answer 

 

 

Question 3: 

 

Answer 
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Taking logarithm on both the sides, we obtain 

 

Differentiating both sides with respect to x, we obtain 

 

 

Question 4: 

 

Answer 

 

Using chain rule, we obtain 
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Question 5: 

 

Answer 
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Question 6: 

 

Answer 
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Therefore, equation (1) becomes 

 

 

Question 7: 

 

Answer 
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Taking logarithm on both the sides, we obtain 

 

Differentiating both sides with respect to x, we obtain 

 

 

Question 8: 

, for some constant a and b. 

Answer 

 

By using chain rule, we obtain 

 

 

Question 9: 

 

Answer 
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Taking logarithm on both the sides, we obtain 

 

Differentiating both sides with respect to x, we obtain 

 

 

Question 10: 

, for some fixed and  

Answer 

 

 

Differentiating both sides with respect to x, we obtain 
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Differentiating both sides with respect to x, we obtain 

 

s = aa 

Since a is constant, aa is also a constant. 

∴  

From (1), (2), (3), (4), and (5), we obtain 
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Question 11: 

, for  

Answer 

 

Differentiating both sides with respect to x, we obtain 

 

Differentiating with respect to x, we obtain 

 

Also, 

 

Differentiating both sides with respect to x, we obtain 
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Substituting the expressions of in equation (1), we obtain 

 

 

Question 12: 

Find , if  

Answer 

 

 

Question 13: 

Find , if  

Answer 
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Question 14: 

If , for, −1 < x <1, prove that 

 

Answer 

It is given that, 
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Differentiating both sides with respect to x, we obtain 

 

Hence, proved. 
 

Question 15: 

If , for some prove that 

is a constant independent of a and b

Answer 

It is given that,  

Differentiating both sides with respect to x, we obtain 
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Hence, proved. 

 

Question 16: 

If with prove that  

Answer 
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Then, equation (1) reduces to 

 

Hence, proved. 

 

Question 17: 

If and , find  

Answer 
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Question 18: 

If , show that exists for all real x, and find it. 

Answer 

It is known that, 

 

Therefore, when x ≥ 0,  

In this case, and hence,  

When x < 0,  
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In this case, and hence,  

Thus, for , exists for all real x and is given by, 

 

 

Question 19: 

Using mathematical induction prove that for all positive integers n. 

Answer 

 

For n = 1, 

 

∴P(n) is true for n = 1 

Let P(k) is true for some positive integer k. 

That is, 
 

It has to be proved that P(k + 1) is also true. 
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Thus, P(k + 1) is true whenever P (k) is true. 

Therefore, by the principle of mathematical induction, the statement P(n) is true for 

every positive integer n. 

Hence, proved. 
 

Question 20: 

Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain 

the sum formula for cosines. 

Answer 

 

Differentiating both sides with respect to x, we obtain 

 

 

Question 22: 

If , prove that 

 

Answer 
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Thus, 

 

 

Question 23: 

If , show that  

Answer 

It is given that,  
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